Package: BayesfMRI (via r-universe)

October 24, 2024

Type Package

Title Spatial Bayesian Methods for Task Functional MRI Studies

Version 0.8.0

Maintainer Amanda Mejia <mandy.mejia@gmail.com>

Description Performs a spatial Bayesian general linear model (GLM) for task functional magnetic resonance imaging (fMRI) data on the cortical surface. Additional models include group analysis and inference to detect thresholded areas of activation. Includes direct support for the 'CIFTI' neuroimaging file format. For more information see A. F. Mejia, Y. R. Yue, D. Bolin, F. Lindgren, M. A. Lindquist (2020)
<doi:10.1080/01621459.2019.1611582> and D. Spencer, Y. R. Yue, D. Bolin, S. Ryan, A. F. Mejia (2022)
<doi:10.1016/j.neuroimage.2022.118908>.

Depends R (>= 3.6.0)

License GPL-3

Additional_repositories https://inla.r-inla-download.org/R/testing

Encoding UTF-8

Imports car, ciftiTools (>= 0.14.0), excursions, foreach, fMRItools (>= 0.4.2), MASS, Matrix, matrixStats, methods, Rcpp, stats, sp, utils, viridisLite

Suggests covr, abind, dplyr, ggplot2, grDevices, INLA (>= 0.0-1468840039), knitr, MatrixModels, parallel, purrr, rmarkdown, SQUAREM, testthat (>= 3.0.0), tidyr, spelling

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

URL https://github.com/mandymejia/BayesfMRI

BugReports https://github.com/mandymejia/BayesfMRI/issues

LinkingTo RcppEigen, Rcpp

Language en-US

Contents

Repositoryhttps://mandymejia.r-universe.devRemoteUrlhttps://github.com/mandymejia/bayesfmriRemoteRefHEADRemoteSha8250b37b003b90f3fcaa24d23c1b224b3c0082fe

Contents

BayesfMRI-package 3
.findTheta
.getSqrtInvCpp
.initialKP
.logDetQt
activations
aic_Param
ar_order_Param
ar_smooth_Param
BayesGLM
BayesGLM2
Bayes_Param
BOLD_Param_BayesGLM
brainstructures_Param_BayesGLM
buffer_Param
cderiv
Connectome_Workbench_Description
contrasts_Param
design_Param_BayesGLM
emTol_Param
EM_Param
faces_Param
field_names_Param
fit bayesglm
hpf Param BayesGLM
HRF96
HRF calc
HRF main
INLA Description
INLA Latent Fields Limit Description
make design $\ldots \ldots 24$
make mask
make mesh
mask Param vertices
max threads Param
mean var Tol Param
mesh Param either
mesh Param inla
multiGLM
multiGLM_fun

31
31
32
32
33
33
34
35
36
37
37
38
38
39
39
39
40
40
41
42
42
43
44
44
45
46
47
47
47
48
48
49
50
30

Index

BayesfMRI-package

BayesfMRI: Spatial Bayesian Methods for Task Functional MRI Studies

Description

Performs a spatial Bayesian general linear model (GLM) for task functional magnetic resonance imaging (fMRI) data on the cortical surface. Additional models include group analysis and inference to detect thresholded areas of activation. Includes direct support for the 'CIFTI' neuroimaging file format. For more information see A. F. Mejia, Y. R. Yue, D. Bolin, F. Lindgren, M. A. Lindquist (2020) doi:10.1080/01621459.2019.1611582 and D. Spencer, Y. R. Yue, D. Bolin, S. Ryan, A. F. Mejia (2022) doi:10.1016/j.neuroimage.2022.118908.

3

.findTheta

Author(s)

Maintainer: Amanda Mejia <mandy.mejia@gmail.com> Authors:

• Daniel Spencer <danieladamspencer@gmail.com> (ORCID)

Other contributors:

- Damon Pham <damondpham@gmail.com> (ORCID) [contributor]
- David Bolin <david.bolin@kaust.edu.sa> [contributor]
- Yu (Ryan) Yue <yybaruch@gmail.com> [contributor]
- Sarah Ryan <sarahryan320@gmail.com> [contributor]

See Also

Useful links:

- https://github.com/mandymejia/BayesfMRI
- Report bugs at https://github.com/mandymejia/BayesfMRI/issues

.findTheta

Perform the EM algorithm of the Bayesian GLM fitting

Description

Perform the EM algorithm of the Bayesian GLM fitting

Usage

```
.findTheta(theta, spde, y, X, QK, Psi, A, Ns, tol, verbose = FALSE)
```

Arguments

theta	the vector of initial values for theta
spde	a list containing the sparse matrix elements Cmat, Gmat, and GtCinvG
У	the vector of response values
Х	the sparse matrix of the data values
QK	a sparse matrix of the prior precision found using the initial values of the hyper- parameters
Psi	a sparse matrix representation of the basis function mapping the data locations to the mesh vertices
A	a precomputed matrix crossprod(X%*%Psi)
Ns	the number of columns for the random matrix used in the Hutchinson estimator
tol	a value for the tolerance used for a stopping rule (compared to the squared norm of the differences between theta(s) and theta(s-1))
verbose	(logical) Should intermediate output be displayed?

4

.getSqrtInvCpp

Description

Get the prewhitening matrix for a single data location

Usage

.getSqrtInvCpp(AR_coefs, nTime, avg_var)

Arguments

AR_coefs	a length-p vector where p is the AR order
nTime	(integer) the length of the time series that is being prewhitened
avg_var	a scalar value of the residual variances of the AR model

.initialKP	Find the initial values	of kappa2 and phi

Description

Find the initial values of kappa2 and phi

Usage

.initialKP(theta, spde, w, n_sess, tol, verbose)

Arguments

theta	a vector of length two containing the range and scale parameters kappa2 and phi, in that order
spde	a list containing the sparse matrix elements Cmat, Gmat, and GtCinvG
W	the beta_hat estimates for a single task
n_sess	the number of sessions
tol	the stopping rule tolerance
verbose	(logical) Should intermediate output be displayed?

.logDetQt

Description

Find the log of the determinant of Q_tilde

Usage

```
.logDetQt(kappa2, in_list, n_sess)
```

Arguments

kappa2	a scalar
in_list	a list with elements Cmat, Gmat, and GtCinvG
n_sess	the integer number of sessions

```
activations
```

Identify field activations

Description

Identify areas of activation for each field from the result of BayesGLM or fit_bayesglm.

Usage

```
activations(
  х,
 Bayes = TRUE,
  gamma = NULL,
  alpha = 0.05,
  correction = c("FWER", "FDR", "none"),
  fields = NULL,
  sessions = NULL,
  verbose = 1
)
id_activations(
  х,
 Bayes = TRUE,
  gamma = NULL,
  alpha = 0.05,
  correction = c("FWER", "FDR", "none"),
  fields = NULL,
  sessions = NULL,
  verbose = 1
)
```

aic_Param

Arguments

x	$Result of {\tt BayesGLM} or {\tt fit_bayesglm} model call, of class "{\tt BGLM}" or "{\tt fit_bglm}".$
Bayes	Use spatial Bayesian modeling to identify activations based on the joint posterior distribution? Default: TRUE. If FALSE, activations will be based on classical (massive univariate) GLM model, with multiple comparisons correction (see correction). Note that TRUE is only applicable if x includes Bayesian results (i.e. x <- BayesGLM(, Bayes = TRUE) was run.)
gamma	Activation threshold, for example 1 for 1 percent signal change if scale_BOLD=="mean" during model estimation. Setting a gamma is required for the Bayesian method; NULL (default) will use a gamma of zero for the classical method.
alpha	Significance level. Default: 0.05.
correction	For the classical method only: Type of multiple comparisons correction: "FWER" (Bonferroni correction, the default), "FDR" (Benjamini Hochberg), or "none".
fields	The field(s) to identify activations for. Give either the name(s) as a character vector, or the numerical indices. If NULL (default), analyze all fields.
sessions	The session(s) to identify activations for. Give either the name(s) as a character vector, or the numerical indices. If NULL (default), analyze the first session.
verbose	1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.

Value

An "act_BGLM" or "act_fit_bglm" object, a list which indicates the activated locations along with related information.

aic_Param

aic

Description

aic

Arguments

aic

(For prewhitening) Use the Akaike information criterion (AIC) to select AR model orders between 0 and ar_order? Default: FALSE.

ar_order_Param ar_order

Description

ar_order

Arguments

ar_order(For prewhitening) The order of the autoregressive (AR) model to use for prewhitening. If 0, do not prewhiten. Default: 6.For multi-session modeling, note that a single AR model is used; its coefficients will be the average estimate from each session.

ar_smooth_Param ar_smooth

Description

ar_smooth

Arguments

```
ar_smooth (For prewhitening) The FWHM parameter for spatially smoothing the coefficient estimates for the AR model to use for prewhitening. Recall that \sigma = \frac{FWHM}{2*sqrt(2*log(2))}. Set to 0 to not smooth the estimates. Default: 5.
```

BayesGLM

BayesGLM for CIFTI

Description

Performs spatial Bayesian GLM for task fMRI activation with CIFTI-format data. The cortex is modeled as a surface mesh, and subcortical structures are modeled as distinct volumetric regions. Includes the pre-processing steps of nuisance regression, prewhitening, scaling, and variance normalization. Supports both single- and multi-session analysis. Can also compute just the classical (spatially-independent)

BayesGLM

Usage

```
BayesGLM(
 BOLD,
 brainstructures = c("left", "right"),
 subROI = c("Amygdala-L", "Amygdala-R", "Caudate-L", "Caudate-R", "Hippocampus-L",
    "Hippocampus-R", "Thalamus-L", "Thalamus-R"),
  design,
  nuisance = NULL,
  hpf = NULL,
  TR = NULL,
  surfL = NULL,
  surfR = NULL,
  resamp_res = 10000,
  nbhd_order = 1,
  buffer = c(1, 1, 3, 4, 4),
  session_names = NULL,
  scale_BOLD = c("mean", "sd", "none"),
  Bayes = TRUE,
  hyperpriors = c("informative", "default"),
  ar_order = 6,
  ar_smooth = 5,
 aic = FALSE,
  n_{threads} = 4,
  return_INLA = c("trimmed", "full", "minimal"),
  verbose = 1,
 meanTol = 1e-06,
  varTol = 1e-06
)
```

Arguments

BOLD	fMRI timeseries data in CIFTI format ("*.dtseries.nii"). For single-session anal- ysis this can be a file path to a CIFTI file or a "xifti" object from the ciftiTools package. For multi-session analysis this can be a vector of file paths or a list of "xifti" objects.
	If BOLD is a "xifti" object(s), the surfaces, if any, will be used for the spa- tial model. However, if surfL and surfR are provided, they will override any surfaces in BOLD.
brainstructures	5
	Character vector indicating which brain structure(s) of BOLD to analyze: "left" cortex; "right" cortex; and/or "subcortical" structures. Or "all" to model all three. Default: c("left", "right") (cortex only).
subROI	Which subcortical ROIs should be analyzed?
design	A numeric matrix or data.frame, or a "BayesfMRI_design" object from make_design. Can also be an array where the third dimension is the same length as the number of data locations, to model each location with its own design.

nuisance	(Optional) A $T \times N$ matrix of nuisance signals, where T is the number of time- points and N is the number of nuisance signals, or a list of these for multi- session analysis. Nuisance signals are regressed from the fMRI data and design matrix prior to GLM computation. Nuisance signals can include motion regres- sors, HRF derivatives not being modeled as tasks, and other sources of noise. Detrending/high-pass filtering is accomplished by adding DCT bases to the nui-
	sance matrix; see the parameters hpf and DCT.
hpf	Add DCT bases to nuisance to apply a temporal high-pass filter to the data, for detrending? hpf is the filter frequency. Use NULL to skip detrending. Detrending is strongly recommended for fMRI data, to help reduce the autocorrelation in the residuals, so NULL will induce a warning. Use "already" to disable the warning while skipping highpass filtering.
	Using at least two DCT bases is as sufficient for detrending as using linear and quadratic drift terms in the nuisance matrix. So if DCT detrending is being used
тр	Temporal resolution of the data in seconds
IR surfl surfP	For cortax spatial model. Laft and right cortax surface geometry in CIETI format
Surie, Surie	("*.surf.gii"). These can be a file path to a GIFTI file or a "surf" object from ciftiTools.
	Surfaces can alternatively be provided through the \$surf metadata in BOLD if it is "xifti" data. If neither are provided, by default the HCP group-average fs_LR inflated surfaces included in ciftiTools will be used for the cortex spa- tial model.
resamp_res	For cortex spatial model. The number of vertices to which each cortical surface should be resampled, or NULL to not resample.
	For computational feasibility, a value of 10000 (default) or lower is recom- mended for Bayesian spatial modeling. If Bayes=FALSE, resamp_res can be set to NULL for full-resolution classical modeling.
nbhd_order	For volumetric model. What order neighborhood around data locations to keep? Ø for no neighbors, 1 for 1st-order neighbors, 2 for 1st- and 2nd-order neighbors, etc. Smaller values will provide greater computational efficiency at the cost of higher variance around the edge of the data.
buffer	For volumetric model. The number of extra voxel layers around the bounding box. Set to NULL for no buffer. (We recommend not changing buffer unless you know what you're doing. Instead, to reduce the number of boundary voxels, adjust nbhd_order).
session_names	The names of the task-fMRI BOLD sessions, for multi-session analysis. If not provided here, will be inferred from names(BOLD), inferred from names(design), or generated automatically, in that order.
scale_BOLD	Controls scaling the BOLD response at each location.
	"mean": Scale the data to percent local signal change.
	"sd": Scale the data by local standard deviation.
	"none": Center the data but do not scale it.
Bayes	Perform spatial Bayesian modeling? Default: TRUE. If FALSE, only perform classical (massive univariate) modeling. (The classical GLM result is always returned, whether Bayes is TRUE or FALSE.)

BayesGLM

hyperpriors	Should informative or default non-informative hyperpriors be assumed on SPDE hyperparameters?
ar_order	(For prewhitening) The order of the autoregressive (AR) model to use for prewhitening. If 0 , do not prewhiten. Default: 6.
	For multi-session modeling, note that a single AR model is used; its coefficients will be the average estimate from each session.
ar_smooth	(For prewhitening) The FWHM parameter for spatially smoothing the coefficient estimates for the AR model to use for prewhitening. Recall that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 to not smooth the estimates. Default: 5.
aic	(For prewhitening) Use the Akaike information criterion (AIC) to select AR model orders between 0 and ar_order? Default: FALSE.
n_threads	The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.
return_INLA	Return the INLA model object? (It can be large.) Use "trimmed" (default) returns the results sufficient for activations and BayesGLM2; "minimal" returns enough for BayesGLM2 but not activations; "full" returns the full inla output.
verbose	1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.
meanTol,varTol	Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

Details

To use BayesGLM, the design matrix must first be constructed with make_design.

Value

An object of class "BayesGLM": a list with elements

betas_Bayesian The field coefficients for the Bayesian model.

betas_classical The field coefficients for the classical model.

GLMs_Bayesian The entire list of GLM results, except for parameters estimated for the classical model.

GLMs_classical Parameters estimated for the classical model from the GLM.

brainstructures data.frame summarizing the spatial features of each brain structure modeled.

sessions data.frame with the name and nTime of each BOLD session.

fields data.frame with the name, related task, and HRF_order of each field.

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first down-load and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench .

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

INLA Latent Fields Limit

INLA computation times increase greatly when the number of columns in the design matrix exceeds five: when there are more than five tasks, or more than three tasks each with a temporal derivative modeled as a field. In cases like the latter, we recommend modeling the temporal derivatives as nuisance signals using the option dHRF_as="nuisance", rather than modeling the temporal derivatives as fields.

BayesGLM2

Group-level Bayesian GLM

Description

Performs group-level Bayesian GLM estimation and inference using the joint approach described in Mejia et al. (2020).

Usage

```
BayesGLM2(
  results,
  contrasts = NULL,
  quantiles = NULL,
  excursion_type = NULL,
  contrast_names = NULL,
  gamma = 0,
  alpha = 0.05,
  nsamp_theta = 50,
  nsamp_beta = 100,
 num_cores = NULL,
  verbose = 1
)
BayesGLM_group(
  results,
  contrasts = NULL,
  quantiles = NULL,
  excursion_type = NULL,
  gamma = 0,
  alpha = 0.05,
  nsamp_theta = 50,
  nsamp_beta = 100,
 num_cores = NULL,
  verbose = 1
)
```

Arguments

results	Either (1) a length N list of "BGLM" objects, or (2) a length N character vector of files storing "BGLM" objects saved with saveRDS. "fit_bglm" objects also are accepted.
contrasts	(Optional) A list of contrast vectors that specify the group-level summaries of interest. If NULL (DEFAULT), use contrasts that compute the average of each field (field HRF) across all subjects/sessions.
	Each contrast vector is length KSN specifying a group-level summary of inter- est, where K is the number of fields in the first-level design matrices, S is the number of sessions, and N is the number of subjects. The vector is grouped by fields, then sessions, then subjects.
	For a single session/subject, the contrast vector for the first field would be:
	<pre>c0 <- c(1, rep(0, K-1)) #indexes the first field for a single session</pre>
	so the full contrast vector for the group <i>average over all sessions/subjects for the first field</i> would be:
	contrasts = rep(c0, S*N) /(S*N).
	To obtain the group average for the first field, for <i>just the first session</i> , input zeros for the remaining sessions:
	c2<- c(c0, rep(0, K*(S-1)))
	To obtain the group mean <i>difference between two sessions</i> $(S = 2)$ for the first field:
	c3 <- c(c0, -c0) contrasts = rep(c3, N) / N.
	To obtain the mean over sessions of the first field, just for the first subject:
	c4 <- rep(c0, S) c(c4, rep(0, K*S*(N-1))) / S.
quantiles	(Optional) Vector of posterior quantiles to return in addition to the posterior mean.
excursion_type	(For inference only) The type of excursion function for the contrast (">", "<", "!="), or a vector thereof (each element corresponding to one contrast). If NULL, no inference performed.
contrast_names	(Optional) Names of contrasts.
gamma	(For inference only) Activation threshold for the excursion set, or a vector thereof (each element corresponding to one contrast). Default: 0.
alpha	(For inference only) Significance level for activation for the excursion set, or a vector thereof (each element corresponding to one contrast). Default: .05.
nsamp_theta	Number of theta values to sample from posterior. Default: 50.
nsamp_beta	Number of beta vectors to sample conditional on each theta value sampled. De-fault: 100.
num_cores	The number of cores to use for sampling betas in parallel. If NULL (default), do not run in parallel.
verbose	1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.

A list containing the estimates, PPMs and areas of activation for each contrast.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

Bayes_Param Bayes Description Bayes Arguments Bayes Perform spatial Bayesian modeling? Default: TRUE. If FALSE, only perform classical (massive univariate) modeling. (The classical GLM result is always returned, whether Bayes is TRUE or FALSE.) BOLD_Param_BayesGLM BOLD Description BOLD Arguments BOLD fMRI timeseries data in CIFTI format ("*.dtseries.nii"). For single-session analysis this can be a file path to a CIFTI file or a "xifti" object from the ciftiTools package. For multi-session analysis this can be a vector of file paths or a list of "xifti" objects. If BOLD is a "xifti" object(s), the surfaces, if any, will be used for the spatial model. However, if surfL and surfR are provided, they will override any surfaces in BOLD.

brainstructures_Param_BayesGLM brainstructures

Description

brainstructures

Arguments

brainstructures

Character vector indicating which brain structure(s) of BOLD to analyze: "left" cortex; "right" cortex; and/or "subcortical" structures. Or "all" to model all three. Default: c("left", "right") (cortex only).

buffer_Param	buffer
Description	
buffer	
Arguments	
buffer	For volumetric model. The number of extra voxel layers around the bounding box. Set to NULL for no buffer. (We recommend not changing buffer unless you know what you're doing. Instead, to reduce the number of boundary voxels, adjust nbhd_order).
cderiv	Central derivative

Description

Take the central derivative of numeric vectors by averaging the forward and backward differences.

Usage

cderiv(x)

Arguments

х

A numeric matrix, or a vector which will be converted to a single-column matrix.

Value

A matrix or vector the same dimensions as x, with the derivative taken for each column of x. The first and last rows may need to be deleted, depending on the application.

Examples

x <- cderiv(seq(5))
stopifnot(all(x == c(.5, 1, 1, 1, .5)))</pre>

Connectome_Workbench_Description

Connectome Workbench

Description

Connectome Workbench

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first down-load and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench .

contrasts_Param contrasts

Description

contrasts

Arguments

contrasts List of contrast vectors to be passed to inla::inla.

design_Param_BayesGLM design

Description

design

Arguments

design A numeric matrix or data.frame, or a "BayesfMRI_design" object from make_design. Can also be an array where the third dimension is the same length as the number of data locations, to model each location with its own design.

16

emTol_Param	emTol
Description	
emTol	
Arguments	
emTol	The stopping tolerance for the EM algorithm. Default: 1e-3.
EM_Param	EM
Description	
EM	
Arguments	
EM	(logical) Should the EM implementation of the Bayesian GLM be used? De- fault: FALSE. This method is still in development.
faces_Param	faces
Description	
faces	
Arguments	
faces	An $F \times 3$ matrix, where each row contains the vertex indices for a given triangular face in the mesh. F is the number of faces in the mesh.
field_names_Pa	ram <i>field_names</i>
Description	
field_names	
Arguments	

field_names (Optional) Names of fields represented in design matrix.

fit_bayesglm fit_bayesglm

Description

Performs spatial Bayesian GLM for task fMRI activation

Usage

```
fit_bayesglm(
 BOLD,
 design,
 nuisance = NULL,
 spatial,
  scale_BOLD = c("mean", "sd", "none"),
 Bayes = TRUE,
 hyperpriors = c("informative", "default"),
 ar_order = 6,
 ar_smooth = 5,
 aic = FALSE,
 n_{threads} = 4,
  return_INLA = c("trimmed", "full", "minimal"),
 verbose = 1,
 meanTol = 1e-06,
 varTol = 1e-06
)
```

Arguments

BOLD, design, nui	sance
	Session-length list of numeric matrices/arrays, each with volumes along the first dimension.
spatial	Gives the spatial information:
	surf A list of two: vertices $V \times 3$ numeric matrix of vertex locations in XYZ coordinate space, and faces, $F \times 3$ matrix of positive integers defining the triangular faces.
	mask Mask of locations with valid data.
	For voxel data, a list of six:
	label 3D array of labeled locations to include in the model.
	trans_mat Projection matrix to convert voxel indices to XYZ position. Can be NULL.
	trans_units XYZ units. Can be NULL.
	nbhd_order See documentation for BayesGLM.
	buffer See documentation for BayesGLM.
scale_BOLD	Controls scaling the BOLD response at each location.

"mean": Scale the data to percent local signal change. "sd": Scale the data by local standard deviation. "none": Center the data but do not scale it.
Perform spatial Bayesian modeling? Default: TRUE. If FALSE, only perform classical (massive univariate) modeling. (The classical GLM result is always returned, whether Bayes is TRUE or FALSE.)
Should informative or default non-informative hyperpriors be assumed on SPDE hyperparameters?
(For prewhitening) The order of the autoregressive (AR) model to use for prewhiten- ing. If 0, do not prewhiten. Default: 6.
For multi-session modeling, note that a single AR model is used; its coefficients will be the average estimate from each session.
(For prewhitening) The FWHM parameter for spatially smoothing the coefficient estimates for the AR model to use for prewhitening. Recall that $\sigma = \frac{FWHM}{2*sqrt(2*log(2))}$. Set to 0 to not smooth the estimates. Default: 5.
(For prewhitening) Use the Akaike information criterion (AIC) to select AR model orders between 0 and ar_order? Default: FALSE.
The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.
Return the INLA model object? (It can be large.) Use "trimmed" (default) returns the results sufficient for activations and BayesGLM2; "minimal" returns enough for BayesGLM2 but not activations; "full" returns the full inla output.
1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.
Tolerance for mean, variance and SNR of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for mean and variance, 50 for SNR.

Value

A "BayesGLM" object: a list with elements

INLA_model_obj The full result of the call to INLA::inla.

field_estimates The estimated coefficients for the Bayesian model.

- **result_classical** Results from the classical model: field estimates, field standard error estimates, residuals, degrees of freedom, and the mask.
- **mesh** The model mesh including only the locations analyzed, i.e. within mask, without missing values, and meeting meanTol and varTol.

mesh_orig The original mesh provided.

mask A mask of mesh_orig indicating the locations inside mesh.

- **design** The design matrix, after centering and scaling, but before any nuisance regression or prewhitening.
- field_names The names of the fields.

session_names The names of the sessions.

hyperpar_posteriors Hyperparameter posterior densities.

theta_estimates Theta estimates from the Bayesian model.

posterior_Sig_inv For joint group modeling.

mu_theta For joint group modeling.

Q_theta For joint group modeling.

- **y** For joint group modeling: The BOLD data after any centering, scaling, nuisance regression, or prewhitening.
- **X** For joint group modeling: The design matrix after any centering, scaling, nuisance regression, or prewhitening.
- prewhiten_info Vectors of values across locations: phi (AR coefficients averaged across sessions), sigma_sq (residual variance averaged across sessions), and AIC (the maximum across sessions).

call match.call() for this function call.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

hpf_Param_BayesGLM hpf

Description

hpf

Arguments

hpf

Add DCT bases to nuisance to apply a temporal high-pass filter to the data, for detrending? hpf is the filter frequency. Use NULL to skip detrending. Detrending is strongly recommended for fMRI data, to help reduce the autocorrelation in the residuals, so NULL will induce a warning. Use "already" to disable the warning while skipping highpass filtering.

Using at least two DCT bases is as sufficient for detrending as using linear and quadratic drift terms in the nuisance matrix. So if DCT detrending is being used here, there is no need to add linear and quadratic drift terms to nuisance.

Description

Calculate the HRF from a time vector and parameters. Optionally compute the first or second derivative of the HRF instead.

Usage

HRF96(t, deriv = 0, a1 = 6, b1 = 0.9, a2 = 12, b2 = 0.9, c = 0.35)

Arguments

t	time vector
deriv	$\boldsymbol{\vartheta}$ (default) for the HRF, 1 for the first derivative of the HRF, or 2 for the second derivative of the HRF.
a1	delay of response. Default: 6
b1	response dispersion. Default: 0.9
a2	delay of undershoot. Default: 12
b2	dispersion of undershoot. Default: 0.9
с	scale of undershoot. Default: 0.35

Value

HRF vector (or dHRF, or d2HRF) corresponding to time

Examples

```
upsample <- 100
HRF96(seq(0, 30, by=1/upsample))
```

HRF_calc

Canonical HRF and Derivatives

Description

Calculate the HRF from a time vector and parameters, or its derivative with respect to delay or dispersion.

Usage

```
HRF_calc(
    t,
    deriv = 0,
    a1 = 6,
    b1 = 1,
    a2 = 16/6 * a1 * sqrt(b1),
    b2 = b1,
    c = 1/6,
    o = 0
)
```

Arguments

t	time vector (in units of seconds)
deriv	\emptyset (default) for the HRF, 1 for the delay derivative of the HRF, or 2 for the dispersion derivative of the HRF.
a1	delay of response. Default: 6
b1	response dispersion. Default: 1
a2	delay of undershoot. Default: 16/6 * a1 * sqrt(b1) = 16
b2	dispersion of undershoot. Default: b1 = 1
с	scale of undershoot. Default: 1/6
0	onset of response. Default: 0

Value

HRF vector (or dHRF, or d2HRF) corresponding to time vector t

HRF_main

Canonical (double-gamma) HRF

Description

Calculate the HRF from a time vector and parameters. Optionally compute the first or second derivative of the HRF instead. Form of HRF is similar to SPM but here the response and undershoot are scaled so the difference of the HRFs peaks at 1 and -c

Usage

```
HRF_main(t, a1 = 6, b1 = 1, a2 = NULL, b2 = NULL, c = 1/6, o = 0)
```

22

INLA_Description

Arguments

t	time vector (in seconds). Must be equally spaced
a1	delay of response. Default: 6
b1	response dispersion. Default: 1
a2	delay of undershoot. Default: 16/6*a1 = 16
b2	dispersion of undershoot. Default: b1 = 1
С	scale of undershoot. Default: 1/6
0	onset of response (in seconds). Default: 0

Value

HRF vector corresponding to time vector t

INLA_Description INLA

Description

INLA

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

INLA_Latent_Fields_Limit_Description INLA Latent Fields

Description

INLA Latent Fields

INLA Latent Fields Limit

INLA computation times increase greatly when the number of columns in the design matrix exceeds five: when there are more than five tasks, or more than three tasks each with a temporal derivative modeled as a field. In cases like the latter, we recommend modeling the temporal derivatives as nuisance signals using the option dHRF_as="nuisance", rather than modeling the temporal derivatives as fields.

make_design

Description

Make the design matrix for the GLM, from the task information.

Usage

```
make_design(
  EVs,
  nTime,
  TR,
  dHRF = 0,
  upsample = 100,
  onset = NULL,
  offset = NULL,
  scale_design = TRUE,
  onsets_sep = FALSE,
  offsets_sep = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

EVs	The explanatory variables i.e. the task stimulus information, from which a de- sign matrix will be constructed. This is a list where each entry represents a task as a matrix of onsets (first column) and durations (second column) for each stimuli (each row) of the task, in seconds. List names should be the task names.
	An example of a properly-formatted EVs is: on_s1 <- list(taskA=cbind(on=c(1,9,17), dr=rep(1,3)), taskB=cbind(on=c(3,27), dr=rep(5,2))). In this example, there are two tasks: the first has three 1s-long stimuli, while the second has two 5s-long stimuli. with on_s2 formatted similarly to on_s1.
nTime	the number of timepoints (volumes) in the task fMRI data.
TR	the temporal resolution of the data, in seconds.
dHRF	Controls the extent of HRF derivatives modeling. Set to 0 to only model the main HRF regressor (default), and not include its derivatives; set to 1 to model the temporal derivative too; or, set to 2 to model both the temporal and dispersion derivatives. If dHRF==0, there is one design column (field) per task. If dHRF==1, there are two fields per task. And if dHRF==2, there are three fields per task. If there are several tasks and dHRF>0, the total number of design matrix columns may avoid five, which may acquire large computation times with DL A. The
	analysis can be adjusted by modeling the derivatives as nuisance signals rather

	than as fields. To do so, move the corresponding columns from the design matrix to the nuisance argument for BayesGLM.	
upsample	Upsample factor for convolving stimulus boxcar or stick function with canonical HRF. Default: 100.	
onset, offset	Add task regressors indicating the onset and/or offset of each event block? Provide the names of the tasks as a character vector. All onsets (or offsets) across the specified tasks will be represented by one additional column in the design matrix. The task names must match the names of EVs. Can also be "all" to use all tasks. Onsets/offset modeling is only compatible with a block design experiment. An error will be raised if the events in EVs do not have duration greater than one second.	
scale_design	Scale the columns of the design matrix? Default: TRUE.	
onsets_sep, offsets_sep		
	Model the onsets (onsets_sep) or offsets (offsets_sep) separately for each task? Default: FALSE, to model all onsets together, or all offsets together, as a single field in the design.	
verbose	Print diagnostic messages? Default: TRUE.	
•••	Additional arguments to HRF_calc.	

Value

A "BfMRI_design" object: a list with elements

design The volumes by fields design matrix. Column names are field names.

field_names The name of each task from the provided onsets.

dHRF The input dHRF parameter.

HRF_info Additional HRF modeling results.

make_mask

Mask out invalid data

Description

Mask out data locations that are invalid (missing data, low mean, or low variance) for any session.

Usage

```
make_mask(BOLD, meanTol = 1e-06, varTol = 1e-06, verbose = TRUE)
```

Arguments

BOLD	A session-length list of $T \times V$ numeric BOLD data.
meanTol,varTol	Tolerance for mean and variance of each data location. Locations which do not
	meet these thresholds are masked out of the analysis. Defaults: 1e-6.
verbose	Print messages counting how many locations are removed? Default: TRUE.

Value

A logical vector indicating locations that are valid across all sessions.

Examples

```
nT <- 30
nV <- 400
BOLD1 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD1[,seq(30,50)] <- NA
BOLD2 <- matrix(rnorm(nT*nV), nrow=nT)
BOLD2[,65] <- BOLD2[,65] / 1e10
BOLD <- list(sess1=BOLD1, sess2=BOLD2)
make_mask(BOLD)
```

make_mesh

Make Mesh

Description

Make INLA triangular mesh from faces and vertices

Usage

```
make_mesh(vertices, faces)
```

Arguments

vertices	A $V \times 3$ matrix, where each row contains the Euclidean coordinates at which a given vertex in the mesh is located. V is the number of vertices in the mesh
faces	An $F \times 3$ matrix, where each row contains the vertex indices for a given triangular face in the mesh. F is the number of faces in the mesh.

Value

INLA triangular mesh

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

26

mask_Param_vertices mask: vertices

Description

mask: vertices

Arguments

mask

A length V logical vector indicating if each vertex is within the input mask.

max_threads_Param max_threads

Description

max_threads

Arguments

max_threads The maximum number of threads to use in the inla-program for model estimation. 0 (default) will use the maximum number of threads allowed by the system.

mean_var_Tol_Param mean and variance tolerance

Description

mean and variance tolerance

Arguments

meanTol, varTol Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

mesh_Param_either mesh: either

Description

mesh: either

Arguments

mesh

An "inla.mesh" object (see make_mesh for surface data)

mesh_Param_inla mesh: INLA only

Description

mesh: INLA only

Arguments

mesh

An "inla.mesh" object (see make_mesh for surface data).

multiGLM

multiGLM for CIFTI

Description

Performs classical Bayesian GLM for task fMRI activation with CIFTI-format data, evaluating multiple design matrices. Includes the pre-processing steps of nuisance regression. Supports single-session analysis only.

Usage

```
multiGLM(
   BOLD,
   design,
   brainstructures = c("left", "right"),
   TR = NULL,
   resamp_res = 10000,
   hpf = NULL,
   nuisance = NULL,
   design_canonical = NULL,
   verbose = 1,
   meanTol = 1e-06,
   varTol = 1e-06
)
```

```
)
```

Arguments

BOLD

fMRI timeseries data in CIFTI format ("*.dtseries.nii"). For single-session analysis this can be a file path to a CIFTI file or a "xifti" object from the ciftiTools package. For multi-session analysis this can be a vector of file paths or a list of "xifti" objects.If BOLD is a "xifti" object(s), the surfaces, if any, will be used for the spatial model. However, if surfL and surfR are provided, they will override any surfaces in BOLD.

design	A 3D numeric array that is locations by fields by designs.
brainstructures	3
	Character vector indicating which brain structure(s) of BOLD to analyze: "left" cortex; "right" cortex; and/or "subcortical" structures. Or "all" to model all three. Default: c("left", "right") (cortex only).
TR	Temporal resolution of the data, in seconds.
resamp_res	For cortex spatial model. The number of vertices to which each cortical surface should be resampled, or NULL to not resample.
	For computational feasibility, a value of 10000 (default) or lower is recom- mended for Bayesian spatial modeling. If Bayes=FALSE, resamp_res can be set to NULL for full-resolution classical modeling.
hpf	Add DCT bases to nuisance to apply a temporal high-pass filter to the data, for detrending? hpf is the filter frequency. Use NULL to skip detrending. Detrending is strongly recommended for fMRI data, to help reduce the autocorrelation in the residuals, so NULL will induce a warning. Use "already" to disable the warning while skipping highpass filtering.
	Using at least two DCT bases is as sufficient for detrending as using linear and quadratic drift terms in the nuisance matrix. So if DCT detrending is being used here, there is no need to add linear and quadratic drift terms to nuisance.
nuisance	(Optional) A $T \times N$ matrix of nuisance signals, where T is the number of time- points and N is the number of nuisance signals, or a list of these for multi- session analysis. Nuisance signals are regressed from the fMRI data and design matrix prior to GLM computation. Nuisance signals can include motion regres- sors, HRF derivatives not being modeled as tasks, and other sources of noise.
	Detrending/high-pass filtering is accomplished by adding DCT bases to the nui- sance matrix; see the parameters hpf and DCT.
design_canonica	
	TO DO
verbose	1 (default) to print occasional updates during model computation; 2 for occa- sional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.
meanTol, varTol	Tolerance for mean and variance of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for both.

Value

An object of class "mGLM": a list with elements

brainstructures data.frame summarizing the spatial features of each brain structure modeled. **fields** data.frame with the name, related task, and HRF_order of each field.

Connectome Workbench Requirement

This function uses a system wrapper for the 'wb_command' executable. The user must first down-load and install the Connectome Workbench, available from https://www.humanconnectome.org/software/get-connectome-workbench .

multiGLM_fun multiGLM0

Description

Performs classical GLM for task fMRI activation, comparing multiple designs

Usage

```
multiGLM_fun(
  BOLD,
  design,
  nuisance = NULL,
  design_canonical = NULL,
  verbose = 1,
  meanTol = 1e-06,
  varTol = 1e-06
)
```

Arguments

BOLD, design, nui	sance
	Session-length list of numeric matrices/arrays, each with volumes along the first
	dimension.
design_canonica	1
	TO DO
verbose	1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.
meanTol, varTol	Tolerance for mean, variance and SNR of each data location. Locations which do not meet these thresholds are masked out of the analysis. Default: 1e-6 for mean and variance, 50 for SNR.

Value

A "CompareGLM" object: a list with elements

field_estimates The estimated coefficients for the Bayesian model.

mask A mask of mesh_orig indicating the locations inside mesh.

design The design matrix, after centering and scaling, but before any nuisance regression or prewhitening.

field_names The names of the fields.

session_names The names of the sessions.

hyperpar_posteriors Hyperparameter posterior densities.

theta_estimates Theta estimates from the Bayesian model.

- posterior_Sig_inv For joint group modeling.
- mu_theta For joint group modeling.
- **Q_theta** For joint group modeling.
- **y** For joint group modeling: The BOLD data after any centering, scaling, nuisance regression, or prewhitening.
- X For joint group modeling: The design matrix after any centering, scaling, nuisance regression, or prewhitening.
- prewhiten_info Vectors of values across locations: phi (AR coefficients averaged across sessions), sigma_sq (residual variance averaged across sessions), and AIC (the maximum across sessions).
- call match.call() for this function call.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

nbhd_order_Param nbhd_order

Description

nbhd_order

Arguments

nbhd_order
 For volumetric model. What order neighborhood around data locations to keep?
 Ø for no neighbors, 1 for 1st-order neighbors, 2 for 1st- and 2nd-order neighbors, etc. Smaller values will provide greater computational efficiency at the cost of higher variance around the edge of the data.

nuisance_Param_BayesGLM

nuisance

Description

nuisance

Arguments

nuisance	(Optional) A $T \times N$ matrix of nuisance signals, where T is the number of time- points and N is the number of nuisance signals, or a list of these for multi- session analysis. Nuisance signals are regressed from the fMRI data and design matrix prior to GLM computation. Nuisance signals can include motion regres- sors, HRF derivatives not being modeled as tasks, and other sources of noise.
	Detrending/high-pass filtering is accomplished by adding DCT bases to the nui- sance matrix; see the parameters hpf and DCT.

n_threads_Param n_threads

Description

n_threads

Arguments

n_threads	The maximum number of threads to use for parallel computations: prewhitening parameter estimation, and the inla-program model estimation. Default: 4. Note that parallel prewhitening requires the parallel package.

plot.act_BGLM S3 method: use view_xifti to plot a "act_BGLM" object

Description

S3 method: use view_xifti to plot a "act_BGLM" object

Usage

```
## S3 method for class 'act_BGLM'
plot(x, idx = NULL, title = NULL, session = NULL, ...)
```

Arguments

х	An object of class "act_BGLM"
idx	Which field should be plotted? Give the numeric indices or the names. NULL (default) will show all fields. This argument overrides the idx argument to view_xifti.
title	If NULL, the field names associated with idx will be used.
session	Which session should be plotted? NULL (default) will use the first.
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti_surface.

plot.BfMRI_design S3 method: use view_xifti to plot a "BGLM" object

Description

S3 method: use view_xifti to plot a "BGLM" object

Usage

S3 method for class 'BfMRI_design'
plot(x, ...)

Arguments

х	An object of class "BfMRI_design".
	Additional arguments to plot_design.

Value

Result of the call to plot_design

plot.BGLM	S3 method: use view	w_xifti to plot a	"BGLM" object
-----------	---------------------	-------------------	---------------

Description

S3 method: use view_xifti to plot a "BGLM" object

Usage

```
## S3 method for class 'BGLM'
plot(
    x,
    Bayes = NULL,
    idx = NULL,
    title = NULL,
    session = NULL,
    zlim = c(-1, 1),
    ...
)
```

Arguments

х	An object of class "BGLM"
Bayes	TRUE for plotting Bayesian results, FALSE for plotting classical GLM results. Default: NULL, which will use the Bayesian results if available and the classical results if not.
idx	Which field should be plotted? Give the numeric indices or the names. NULL (default) will show all fields. This argument overrides the idx argument to view_xifti.
title	If NULL, the field names associated with idx will be used.
session	Which session should be plotted? NULL (default) will use the first.
zlim	Overrides the zlim argument for view_xifti. Default: c(-1, 1).
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti.

```
plot.BGLM2
```

S3 method: use view_xifti to plot a "BGLM2" object

Description

S3 method: use view_xifti to plot a "BGLM2" object

Usage

```
## S3 method for class 'BGLM2'
plot(x, idx = NULL, what = c("contrasts", "activations"), zlim = c(-1, 1), ...)
```

Arguments

х	An object of class "BGLM2"
idx	Which contrast should be plotted? Give the numeric indices or the names. NULL (default) will show all contrasts. This argument overrides the idx argument to view_xifti.
what	Estimates of the "contrasts" (default), or their thresholded "activations".
zlim	Overrides the zlim argument for view_xifti. Default: c(-1, 1).
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti.

plot.prev_BGLM S3 n

Description

S3 method: use view_xifti to plot a "prev_BGLM" object

Usage

```
## S3 method for class 'prev_BGLM'
plot(
    x,
    idx = NULL,
    session = NULL,
    drop_zeros = NULL,
    colors = "plasma",
    zlim = c(0, 1),
    ...
)
```

Arguments

х	An object of class "prev_BGLM"
idx	Which task should be plotted? Give the numeric indices or the names. NULL (default) will show all tasks. This argument overrides the idx argument to view_xifti.
session	Which session should be plotted? NULL (default) will use the first.
drop_zeros	Color locations without any activation across all results (zero prevalence) the same color as the medial wall? Default: NULL to drop the zeros if only one idx is being plotted.
colors,zlim	See view_xifti.
	Additional arguments to view_xifti

Value

Result of the call to ciftiTools::view_cifti_surface.

plot_design

Description

Plot design matrix

Plot design with lineplot

Plot design with imageplot

Usage

```
plot_design(design, method = c("lineplot", "imageplot"), ...)
```

```
plot_design_line(
   design,
   colors = "Set1",
   linetype = "solid",
   linewidth = 0.7,
   alpha = 0.8
)
```

plot_design_image(design)

Arguments

The timepoints by fields design matrix or data.frame.
"lineplot" (default) or "imageplot".
Additional arguments to plot_design_line or plot_design_image.
The name of a ColorBrewer palette (see RColorBrewer::brewer.pal.info and colorbrewer2.org), the name of a viridisLite palette, or a character vector of colors. Default: "Set1".
dth, alpha
Parameters for ggplot2::geom_line. Defaults: "solid" linetype, 0.7 linewidth and 0.8 alpha. linetype can also be a vector of options with length matching the number of fields in design.

Value

A ggplot

A ggplot

A ggplot

prevalence

Activations prevalence.

Description

Activations prevalence.

Usage

prevalence(act_list, gamma_idx = 1)

Arguments

act_list	List of activations from activations. All should have the same sessions, fields, and brainstructures.
gamma_idx	If activations at multiple thresholds were computed, which threshold should be used for prevalence? Default: the first (lowest).

Value

A list containing the prevalences of activation, as a proportion of the results from act_list.

resamp_res_Param_BayesGLM

resamp_res

Description

resamp_res

Arguments

resamp_res	For cortex spatial model. The number of vertices to which each cortical surface should be resampled, or NULL to not resample.
	For computational feasibility, a value of 10000 (default) or lower is recom- mended for Bayesian spatial modeling. If Bayes=FALSE, resamp_res can be set to NULL for full-resolution classical modeling.

return_INLA_Param return_INLA

Description

return_INLA

Arguments

return_INLA Return the INLA model object? (It can be large.) Use "trimmed" (default) returns the results sufficient for activations and BayesGLM2; "minimal" returns enough for BayesGLM2 but not activations; "full" returns the full inla output.

```
scale_BOLD
```

Scale the BOLD timeseries

Description

Scale the BOLD timeseries

Usage

```
scale_BOLD(BOLD, scale = c("mean", "sd", "none"), v_means = NULL)
```

Arguments

BOLD	fMRI data as a locations by time $(V \times T)$ numeric matrix.
scale	Option for scaling the BOLD response.
v_means	Original means of the BOLD data. ONLY provide if data has already been centered.
	<pre>\code{"mean"} scaling will scale the data to percent local signal change.</pre>
	\code{"sd"} scaling will scale the data by local standard deviation.
	<pre>\code{"none"} will only center the data, not scale it.</pre>

Value

Scale to units of percent local signal change and centers

scale_BOLD_Param scale_BOLD

Description

scale_BOLD

Arguments

scale_BOLD	Controls scaling the BOLD response at each location.
	"mean": Scale the data to percent local signal change.
	"sd": Scale the data by local standard deviation.
	"none": Center the data but do not scale it.

seed_Param	seed
Description	
seed	
Arguments	
seed	Random seed (optional). Default: NULL.
session_names_	Param session_names

Description

session_names

Arguments

session_names The names of the task-fMRI BOLD sessions, for multi-session analysis. If not provided here, will be inferred from names(BOLD), inferred from names(design), or generated automatically, in that order.

summary.act_BGLM Summarize a "act_BGLM" object

Description

Summary method for class "act_BGLM"

Usage

```
## S3 method for class 'act_BGLM'
summary(object, ...)
## S3 method for class 'summary.act_BGLM'
print(x, ...)
## S3 method for class 'act_BGLM'
print(x, ...)
```

Arguments

object	Object of class "act_BGLM".
	further arguments passed to or from other methods.
х	Object of class "summary.act_BGLM".

Value

A "summary.act_BGLM" object, a list summarizing the properties of object. NULL, invisibly. NULL, invisibly.

summary.act_fit_bglm Summarize a "act_fit_bglm" object

Description

Summary method for class "act_fit_bglm"

Usage

```
## S3 method for class 'act_fit_bglm'
summary(object, ...)
## S3 method for class 'summary.act_fit_bglm'
print(x, ...)
## S3 method for class 'act_fit_bglm'
print(x, ...)
```

Arguments

object	Object of class "act_fit_bglm".
	further arguments passed to or from other methods.
x	Object of class "summary.act_fit_bglm".

Value

A "summary.act_fit_bglm" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.BfMRI_design Summarize a "BfMRI_design" object

Description

Summary method for class "BfMRI_design"

Usage

S3 method for class 'BfMRI_design'
summary(object, ...)

S3 method for class 'summary.BfMRI_design'
print(x, ...)

S3 method for class 'BfMRI_design'
print(x, ...)

Arguments

object	Object of class "BfMRI_design".
	further arguments passed to or from other methods.
x	Object of class "summary.BfMRI_design".

Value

A "summary.BfMRI_design" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.BGLM

Description

Summary method for class "BGLM"

Usage

```
## S3 method for class 'BGLM'
summary(object, ...)
## S3 method for class 'summary.BGLM'
print(x, ...)
## S3 method for class 'BGLM'
print(x, ...)
```

Arguments

object	Object of class "BGLM".
	further arguments passed to or from other methods.
х	Object of class "summary.BGLM".

Value

A "summary.BGLM" object, a list summarizing the properties of object. NULL, invisibly. NULL, invisibly.

summary.BGLM2 Summarize a "BGLM2" object

Description

Summary method for class "BGLM2"

Usage

```
## S3 method for class 'BGLM2'
summary(object, ...)
## S3 method for class 'summary.BGLM2'
print(x, ...)
## S3 method for class 'BGLM2'
print(x, ...)
```

Arguments

object	Object of class "BGLM2".
	further arguments passed to or from other methods.
x	Object of class "summary.BGLM2".

Value

A "summary.BGLM2" object, a list summarizing the properties of object. NULL, invisibly.

NULL, invisibly.

summary.fit_bglm Summarize a "fit_bglm" object

Description

Summary method for class "fit_bglm"

Usage

S3 method for class 'fit_bglm'
summary(object, ...)

S3 method for class 'summary.fit_bglm'
print(x, ...)

S3 method for class 'fit_bglm'
print(x, ...)

Arguments

object	Object of class "fit_bglm".
	further arguments passed to or from other methods.
x	Object of class "summary.fit_bglm".

Value

A "summary.fit_bglm" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.fit_bglm2 Summarize a "fit_bglm2" object

Description

Summary method for class "fit_bglm2"

Usage

```
## S3 method for class 'fit_bglm2'
summary(object, ...)
## S3 method for class 'summary.fit_bglm2'
print(x, ...)
## S3 method for class 'fit_bglm2'
print(x, ...)
```

Arguments

object	Object of class "fit_bglm2".
	further arguments passed to or from other methods.
x	Object of class "summary.fit_bglm2".

Value

A "summary.fit_bglm2" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.prev_BGLM Summarize a "prev_BGLM" object

Description

Summary method for class "prev_BGLM" Summary method for class "prev_BGLM"

Usage

```
## S3 method for class 'prev_BGLM'
summary(object, ...)
## S3 method for class 'summary.prev_BGLM'
print(x, ...)
## S3 method for class 'prev_BGLM'
summary(object, ...)
## S3 method for class 'summary.prev_BGLM'
print(x, ...)
## S3 method for class 'prev_BGLM'
print(x, ...)
```

Arguments

object	Object of class "prev_BGLM".
	further arguments passed to or from other methods.
x	Object of class "summary.prev_BGLM".

Value

A "summary.prev_BGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

A "summary.prev_BGLM" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

summary.prev_fit_bglm Summarize a "prev_fit_bglm" object

Description

Summary method for class "prev_fit_bglm" Summary method for class "prev_fit_bglm"

Usage

```
## S3 method for class 'prev_fit_bglm'
summary(object, ...)
## S3 method for class 'summary.prev_fit_bglm'
print(x, ...)
## S3 method for class 'prev_fit_bglm'
print(x, ...)
## S3 method for class 'prev_fit_bglm'
summary(object, ...)
## S3 method for class 'summary.prev_fit_bglm'
print(x, ...)
## S3 method for class 'prev_fit_bglm'
print(x, ...)
```

Arguments

object	Object of class "prev_fit_bglm".
	further arguments passed to or from other methods.
x	Object of class "summary.prev_fit_bglm".

Value

A "summary.prev_fit_bglm" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

A "summary.prev_fit_bglm" object, a list summarizing the properties of object.

NULL, invisibly.

NULL, invisibly.

surfaces_Param_BayesGLM

surfaces

Description

surfaces

46

Arguments

surfL, surfR	For cortex spatial model. Left and right cortex surface geometry in GIFTI format ("*.surf.gii"). These can be a file path to a GIFTI file or a "surf" object from ciftiTools.
	Surfaces can alternatively be provided through the \$surf metadata in BOLD if it is "xifti" data. If neither are provided, by default the HCP group-average fs_LR inflated surfaces included in ciftiTools will be used for the cortex spa- tial model.

trim_INLA_Param trim_INLA

Description

trim_INLA

Arguments

trim_INLA	(logical) should the INLA_model_obj within the result be trimmed to only what
	is necessary to use activations? Default: TRUE.

TR_Param_BayesGLM TR

Description

TR

Arguments

TR

Temporal resolution of the data, in seconds.

verbose_Param verbose

Description

verbose

Arguments

verbose

1 (default) to print occasional updates during model computation; 2 for occasional updates as well as running INLA in verbose mode (if Bayes), or 0 for no printed updates.

vertex_areas

Description

Compute surface areas of each vertex in a triangular mesh.

Usage

vertex_areas(mesh)

Arguments

mesh An "inla.mesh" object (see make_mesh for surface data).

Value

Vector of areas

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

vertices_Param vertices

Description

vertices

Arguments

vertices $A V \times 3$ matrix, where each row contains the Euclidean coordinates at which a given vertex in the mesh is located. V is the number of vertices in the mesh

vol2spde

Description

Construct a triangular mesh from a 3D volumetric mask

Usage

```
vol2spde(mask, res, nbhd_order = 1, buffer = c(1, 1, 3, 4, 4))
```

Arguments

mask	An array of 0s and 1s representing a volumetric mask
res	The spatial resolution in each direction, in mm. For example, $c(2,2,2)$ indicates 2mm isotropic voxels.
nbhd_order	For volumetric data, what order neighborhood around data locations to keep? $(0 = no neighbors, 1 = 1st-order neighbors, 2 = 1st- and 2nd-order neighbors, etc.). Smaller values will provide greater computational efficiency at the cost of higher variance around the edge of the data.$
buffer	For volumetric data, size of extra voxels layers around the bounding box, in terms of voxels. Set to NULL for no buffer.

Value

An inla.spde2 object.

INLA Requirement

This function requires the INLA package, which is not a CRAN package. See https://www.r-inla.org/download-install for easy installation instructions.

Index

.findTheta, 4
.getSqrtInvCpp, 5
.initialKP, 5
.logDetQt, 6

activations, 6, *11*, *19*, *37*, *38* aic_Param, 7 ar_order_Param, 8 ar_smooth_Param, 8

Bayes_Param, 14 BayesfMRI (BayesfMRI-package), 3 BayesfMRI-package, 3 BayesGLM, 8, *18* BayesGLM2, *11*, 12, *19*, *38* BayesGLM_group (BayesGLM2), 12 BOLD_Param_BayesGLM, 14 brainstructures_Param_BayesGLM, 15 buffer_Param, 15

cderiv, 15 Connectome_Workbench_Description, 16 contrasts_Param, 16

design_Param_BayesGLM, 16

EM_Param, 17 emTol_Param, 17

faces_Param, 17
field_names_Param, 17
fit_bayesglm, 18

hpf_Param_BayesGLM, 20 HRF96, 21 HRF_calc, 21, 25 HRF_main, 22

id_activations (activations), 6 INLA_Description, 23

INLA_Latent_Fields_Limit_Description, 23 make_design, 9, 11, 16, 24 make_mask, 25 make_mesh, 26, 27, 28, 48 mask_Param_vertices, 27 max_threads_Param, 27 mean_var_Tol_Param, 27 mesh_Param_either, 27 mesh_Param_inla, 28 multiGLM, 28 multiGLM_fun, 30 n_threads_Param, 32 nbhd_order_Param, 31 nuisance_Param_BayesGLM, 31 plot.act_BGLM, 32 plot.BfMRI_design, 33 plot.BGLM, 33 plot.BGLM2, 34 plot.prev_BGLM, 35 plot_design, 33, 36 plot_design_image (plot_design), 36 plot_design_line (plot_design), 36 prevalence, 37 print.act_BGLM (summary.act_BGLM), 40 print.act_fit_bglm (summary.act_fit_bglm), 40 print.BfMRI_design (summary.BfMRI_design), 41 print.BGLM (summary.BGLM), 42 print.BGLM2 (summary.BGLM2), 42 print.fit_bglm(summary.fit_bglm), 43 print.fit_bglm2(summary.fit_bglm2),44 print.prev_BGLM (summary.prev_BGLM), 44 print.prev_fit_bglm (summary.prev_fit_bglm), 45

INDEX

print.summary.act_BGLM (summary.act_BGLM), 40 print.summary.act_fit_bglm (summary.act_fit_bglm), 40 print.summary.BfMRI_design $(summary.BfMRI_design), 41$ print.summary.BGLM(summary.BGLM), 42 print.summary.BGLM2(summary.BGLM2), 42 print.summary.fit_bglm (summary.fit_bglm), 43 print.summary.fit_bglm2 (summary.fit_bglm2),44 print.summary.prev_BGLM (summary.prev_BGLM), 44 print.summary.prev_fit_bglm (summary.prev_fit_bglm), 45 resamp_res_Param_BayesGLM, 37 return_INLA_Param, 38 saveRDS, 13 scale_BOLD, 38 scale_BOLD_Param, 39 seed_Param, 39 session_names_Param, 39 $summary.act_BGLM, 40$ summary.act_fit_bglm, 40 summary.BfMRI_design, 41 summary.BGLM, 42 summary.BGLM2, 42 summary.fit_bglm,43 summary.fit_bglm2,44 summary.prev_BGLM, 44 summary.prev_fit_bglm,45 surfaces_Param_BayesGLM, 46 TR_Param_BayesGLM, 47 trim_INLA_Param, 47 verbose_Param, 47

vertex_areas, 48
vertices_Param, 48
view_xifti, 32-35
vol2spde, 49